On uniqueness of solutions to conservation laws verifying a single entropy condition

Author:

Krupa Sam G.1,Vasseur Alexis F.1

Affiliation:

1. Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA

Abstract

For hyperbolic systems of conservation laws, uniqueness of solutions is still largely open. We aim to expand the theory of uniqueness for systems of conservation laws. One difficulty is that many systems have only one entropy. This contrasts with scalar conservation laws, where many entropies exist. It took until 1994 to show that one entropy is enough to ensure uniqueness of solutions for the scalar conservation laws (see [E. Yu. Panov, Uniqueness of the solution of the Cauchy problem for a first order quasilinear equation with one admissible strictly convex entropy, Mat. Z. 55(5) (1994) 116–129 (in Russian), Math. Notes 55(5) (1994) 517–525]. This single entropy result was proven again by De Lellis, Otto and Westdickenberg about 10 years later [Minimal entropy conditions for Burgers equation, Quart. Appl. Math. 62(4) (2004) 687–700]. These two proofs both rely on the special connection between Hamilton–Jacobi equations and scalar conservation laws in one space dimension. However, this special connection does not extend to systems. In this paper, we prove the single entropy result for scalar conservation laws without using Hamilton–Jacobi. Our proof lays out new techniques that are promising for showing uniqueness of solutions in the systems case.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics,Analysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3