Minimal entropy conditions for scalar conservation laws with general convex fluxes

Author:

Cao Gaowei,Chen Gui-Qiang

Abstract

We are concerned with the minimal entropy conditions for one-dimensional scalar conservation laws with general convex flux functions. For such scalar conservation laws, we prove that a single entropy-entropy flux pair ( η ( u ) , q ( u ) ) (\eta (u),q(u)) with η ( u ) \eta (u) of strict convexity is sufficient to single out an entropy solution from a broad class of weak solutions in L l o c L^\infty _{\mathrm { loc}} that satisfy the inequality: η ( u ) t + q ( u ) x μ \eta (u)_t+q(u)_x\leq \mu in the distributional sense for some non-negative Radon measure μ \mu . Furthermore, we extend this result to the class of weak solutions in L l o c p L^p_{\mathrm {loc}} , based on the asymptotic behavior of the flux function f ( u ) f(u) and the entropy function η ( u ) \eta (u) at infinity. The proofs are based on the equivalence between the entropy solutions of one-dimensional scalar conservation laws and the viscosity solutions of the corresponding Hamilton-Jacobi equations, as well as the bilinear form and commutator estimates as employed similarly in the theory of compensated compactness.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics

Reference23 articles.

1. A viscosity property of minimizing micromagnetic configurations;Ambrosio, Luigi;Comm. Pure Appl. Math.,2003

2. V. I. Arnol′d, M. I. Vishik, Yu. S. Ilyashenko, A. S. Kalashnikov, V. A. Kondrat′ev, S. N. Kruzhkov, E. M. Landis, V. M. Millionshchikov, O. A. Oleinik, A. F. Filippov, M. A. Shubin, Some unsolved problems in the theory of differential equations and mathematical physics, Uspekhi Mat. Nauk 44 (268) (1989), no. 4, 191-202

3. Russian Math. Surveys 44 (1989), no. 4, 157-171.

4. Kružkov’s estimates for scalar conservation laws revisited;Bouchut, F.;Trans. Amer. Math. Soc.,1998

5. G.-W. Cao, G.-Q. Chen, and X.-Z. Yang, New formula for entropy solutions for scalar hyperbolic conservation laws: Nonuniform convexity of flux functions and fine properties of solutions, Preprint, 2023.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3