High-Dimensional Text Datasets Clustering Algorithm Based on Cuckoo Search and Latent Semantic Indexing

Author:

Ishak Boushaki Saida12,Kamel Nadjet13,Bendjeghaba Omar4

Affiliation:

1. LRIA, University of Science and Technology Houari, Boumediene, Bab Ezzouar 16123, Algeria

2. Department of Informatics, University of M’Hamed Bougara Boumerdes, Boumerdes 35000, Algeria

3. Université Ferhat Abbas Setif 1, Sétif 19000, Algeria

4. LREEI, University M’Hamed Bougara, Boumerdes, Boumerdes 35000, Algeria

Abstract

The clustering is an important data analysis technique. However, clustering high-dimensional data like documents needs more effort in order to extract the richness relevant information hidden in the multidimensionality space. Recently, document clustering algorithms based on metaheuristics have demonstrated their efficiency to explore the search area and to achieve the global best solution rather than the local one. However, most of these algorithms are not practical and suffer from some limitations, including the requirement of the knowledge of the number of clusters in advance, they are neither incremental nor extensible and the documents are indexed by high-dimensional and sparse matrix. In order to overcome these limitations, we propose in this paper, a new dynamic and incremental approach (CS_LSI) for document clustering based on the recent cuckoo search (CS) optimization and latent semantic indexing (LSI). Conducted Experiments on four well-known high-dimensional text datasets show the efficiency of LSI model to reduce the dimensionality space with more precision and less computational time. Also, the proposed CS_LSI determines the number of clusters automatically by employing a new proposed index, focused on significant distance measure. This later is also used in the incremental mode and to detect the outlier documents by maintaining a more coherent clusters. Furthermore, comparison with conventional document clustering algorithms shows the superiority of CS_LSI to achieve a high quality of clustering.

Publisher

World Scientific Pub Co Pte Lt

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3