WeDoCWT: A New Method for Web Document Clustering Using Discrete Wavelet Transforms

Author:

Al-Mofareji Hanan1,Kamel Mahmoud2,Dahab Mohamed Y.1ORCID

Affiliation:

1. Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 23218, Saudi Arabia

2. Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 23218, Saudi Arabia

Abstract

Organizing web information is an important aspect of finding information in the easiest and most efficient way. We present a new method for web document clustering called WeDoCWT, which exploits the discrete wavelet transform and term signal, to improve the document representation. We studied different methods for document segmentation to construct the term signals. We used two datasets, UW-CAN and WebKB, to evaluate the proposed method. The experimental results indicated that dividing the documents into fixed segments is preferable to dividing them into logical segments based on HTML features because the web pages do not have the same structure. Mean TF–IDF reduction technique gives the best results in most cases. WeDoCWT gives [Formula: see text]-measure better than most of the previous approaches described in the literature. We used Munkres assignment algorithm to assign each produced cluster to the original class in order to evaluate the clustering results.

Funder

the Deanship of Scientific Research (DSR), King Abdulaziz University

Publisher

World Scientific Pub Co Pte Lt

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Text Categorisation Through Dimensionality Reduction Using Wavelet Transform;Journal of Information & Knowledge Management;2020-11-27

2. High-Dimensional Text Datasets Clustering Algorithm Based on Cuckoo Search and Latent Semantic Indexing;Journal of Information & Knowledge Management;2018-09

3. PDC-Transitive: An Enhanced Heuristic for Document Clustering Based on Relational Analysis Approach and Iterative MapReduce;Journal of Information & Knowledge Management;2018-06

4. A Tutorial on Information Retrieval Using Query Expansion;Intelligent Natural Language Processing: Trends and Applications;2017-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3