Affiliation:
1. Amity Institute of Information Technology, Amity University, Noida, Uttar Pradesh, India
2. Department of Mathematics, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
Abstract
Software bug prediction is mainly used for testing and code inspection. So, software bug prediction is carried out by network measures over the decades. But, the classical fault prediction method failed to obtain the semantic difference among various programs. Thus, it degrades the working of the prediction model, which is designed using these aspects. It is necessary to obtain the semantic difference for designing the prediction model accurately and effectively. In a software defect prediction system, it faces many difficulties in identifying the defect modules like correlation, irrelevance aspects, data redundancy, and missing samples or values. Consequently, many researchers are designed to detect software bug prediction that categorises faulty as well as non-faulty modules with software matrices. But, there are only a few works focussed to mitigate the class imbalance problem in bug prediction. In order to overcome the problem, it is required to develop an efficient software bug prediction method with the enhanced classifier. For this experimentation, the input data are taken from the standard online data sources. Initially, the input data undergo pre-processing phase and then, the pre-processed data are provided as input to the feature extraction by utilising the Auto-Encoder. These obtained features are utilised in getting the optimal fused features with the help of a new Hybrid Honey Badger Cat Swarm Algorithm (HHBCSA). Finally, these features are fed as input to the Optimised Parallel Cascaded Deep Network (OPCDP), where the “Extreme Learning Machine (ELM) and Deep Belief Network (DBN)” are used for the prediction of software bugs, in which the parameters from both classifiers are optimised by proposed HHBCSA algorithm. From the investigations, the recommended software bug prediction method offers a quicker bug prediction result, which helps to detect and remove the software bug easily and accurately.
Publisher
World Scientific Pub Co Pte Ltd