Comparison and Detection Analysis of Network Traffic Datasets Using K-Means Clustering Algorithm

Author:

Al-Sanjary Omar Ismael1,Roslan Muhammad Aiman Bin2,Helmi Rabab Alayham Abbas1,Ahmed Ahmed Abdullah2

Affiliation:

1. Faculty of Information Science & Engineering, Management & Science University, 40100 Shah Alam, Malaysia

2. Faculty of Engineering and Science, Qaiwan International University (QIU), Sulaymaniyah/Kurdistan Region, Iraq

Abstract

Anomaly detection in specific datasets involves the detection of circumstances that are common in a homogeneous data. When looking at network traffic data, it is generally difficult to determine the type of attack without proper analysis and this holds true when simply viewing a record of network traffic with thousands of internet users to detect malicious activity. However, there are different types of datasets in light of the way they record or acquire data and facts. The paper aims to compare and analyse multiple datasets including NSL-KDD and MAWI by using K-means clustering algorithm. Specifically, the paper analyses the blind-Spots of the datasets and evaluates the most suitable dataset for K-means clustering algorithm. This paper’s quantitative data analysis results are helpful in evaluating weaknesses of each dataset of traffic data, when using K-means clustering algorithm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hybrid Cuckoo Search-K-means Model for Enhanced Intrusion Detection in Internet of Things;2024-06-21

2. Anomaly Detection in Network Traffic using Deep Learning;2023 International Conference on Recent Advances in Science and Engineering Technology (ICRASET);2023-11-23

3. Research on Evaluation Model of Entrepreneurship Education Based on BP Neural Network;Journal of Information & Knowledge Management;2023-07-12

4. Network traffic anomaly detection method based on multi-scale residual classifier;Computer Communications;2023-01

5. NexusKaizen - A Sustainable Network Visualization System;2022 IEEE 10th Conference on Systems, Process & Control (ICSPC);2022-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3