Author:
Abdul Hameed Ashour Marwan,Jamal Arshad,Alayham Abbas Helmi Rabab
Abstract
This research aims to study and analyze which type of Artificial Neural Network (ANN) is more efficient and suitable in handling non-homogenous variance for financial series. Apart from addressing the behavior and efficiency of ANN, the paper also aims to present an advanced methodology for ANN, as a replacement of GARCH and ARCH models in crisis management decision makers. The application part was applied to the Egyptian exchange market, to study the local currency exchange rate volatility (1/1/2009-4/6/2013) in order to develop a model describing those changes in the exchange rate. The research concludes that the best network type to represent such financial series is the Back Propagation. Moreover, comparing the result with general regression and probabilistic networks rendered the later two inefficient at handling such series.
Publisher
Science Publishing Corporation
Subject
Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献