Effectiveness of Artificial Neural Networks in Solving Financial Time Series

Author:

Abdul Hameed Ashour Marwan,Jamal Arshad,Alayham Abbas Helmi Rabab

Abstract

This research aims to study and analyze which type of Artificial Neural Network (ANN) is more efficient and suitable in handling non-homogenous variance for financial series. Apart from addressing the behavior and efficiency of ANN, the paper also aims to present an advanced methodology for ANN, as a replacement of GARCH and ARCH models in crisis management decision makers. The application part was applied to the Egyptian exchange market, to study the local currency exchange rate volatility (1/1/2009-4/6/2013) in order to develop a model describing those changes in the exchange rate. The research concludes that the best network type to represent such financial series is the Back Propagation. Moreover, comparing the result with general regression and probabilistic networks rendered the later two inefficient at handling such series. 

Publisher

Science Publishing Corporation

Subject

Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3