A flow chemiluminescence paper-based microfluidic device for detection of chromium (III) in water

Author:

Shang Qiuping1,Zhang Peng1,Li Huijie1,Liu Rui1,Zhang Chunsun1

Affiliation:

1. MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China

Abstract

In this work, a solely gravity and capillary force-driven flow chemiluminescence (GCF-CL) paper-based microfluidic device has been proved for the first time as a new platform for inexpensive, usable, minimally-instrumented dynamic chemiluminescence (CL) detection of chromium (III) [Cr(III)], where an appropriate angle of inclination between the loading and detection zones on the paper produces a rapid flow of CL prompt solution through the paper channel. For this study, we use a cost-effective paper device that is manufactured by a simple wax screen-printing method, while the signal generated from the Cr(III)-catalyzed oxidation of luminol by H2O2is recorded by a low-cost and luggable CCD camera. A series of GCF-CL affecting factors have been evaluated carefully. At optimal conditions, two linear relationships between GCF-CL intensities and the logarithms of Cr(III) concentrations are obtained in the concentration ranges of 0.025–35[Formula: see text]mg/L and 50–500[Formula: see text]mg/L separately, with the detection limit of 0.0245[Formula: see text]mg/L for a less than 30[Formula: see text]s assay, and relative standard deviations (RSDs) of 3.8%, 4.5% and 2.3% for 0.75, 5 and 50[Formula: see text]mg/L of Cr(III) ([Formula: see text]). The above results indicate that the GCF-CL paper-based microfluidic device possesses a receivable sensitivity, dynamic range, storage stability and reproducibility. Finally, the developed GCF-CL is utilized for Cr(III) detection in real water samples.

Funder

National Natural Science Foundation of China

Guangzhou Science and Technology Program

Guangdong Science and Technology Program

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3