Affiliation:
1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2. Affiliated Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract
Laser Speckle Contrast Imaging (LSCI) plays an important role in studying blood flow, but suffers from limited penetration depth of light in turbid tissue. The strong scattering of tissue obviously reduces the image contrast which decreases the sensitivity to flow velocity. Some image processing or optical clearing methods have been proposed to lessen the deficiency, but quantitative assessment of improvement is seldom given. In this study, LSCI was applied to monitor the blood flow through a capillary embedded within various tissue phantoms at depths of 0.25, 0.45, 0.65, 0.85 and 1.05 mm, and the flow velocity in capillary was controllable from 0 to 4 mm/s. Here, glycerol, a common optical clearing agent, was mixed with Intralipid at different volume ratio to make the reduced scattering coefficient of tissue phantom decrease from 13.00 to 0.50 cm-1. The quantitative analysis demonstrates that the optical clearing method can obviously enhance the image contrast, imaging depth, and sensitivity to blood flow velocity. Comparing the Laser Speckle Contrast Analysis methods and the optical clearing method, we find that for typical turbid tissue, the sensitivity to velocity estimated by the Laser Speckle Temporal Contrast Analysis (LSTCA) is twice of that by the Laser Speckle Spatial Contrast Analysis (LSSCA); while the sensitivity to velocity estimated by using the two analysis methods has a 10-fold increase, respectively, if addition of glycerol makes the reduced scattering coefficient of tissue phantom decrease by 30%. Combining the LSTCA and the optical clearing method, the sensitivity to flow velocity will be further enhanced.
Publisher
World Scientific Pub Co Pte Lt
Subject
Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献