3-photon fluorescence and third-harmonic generation imaging of myelin sheaths in mouse digital skin in vivo: A comparative study

Author:

Wang Ke1,Pan Yi1,Chen Xinlin1,Tong Shen1ORCID,Liang Huiping1,Lu Yuan2,Qiu Ping1ORCID

Affiliation:

1. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China

2. Department of Dermatology, The sixth Hospital of Shenzhen University (Nanshan Hospital), Shenzhen 518052, P. R. China

Abstract

Myelin sheaths wrapping axons are key structures that help maintain the propagation speed of action potentials in both central and peripheral nervous systems (CNS and PNS). However, noninvasive, deep imaging technologies visualizing myelin sheaths in the digital skin in vivo are lacking in animal models. 3-photon fluorescence (3PF) imaging excited at the 1700-nm window enables deep imaging of myelin sheaths, but necessitates labeling by exogenous fluorescent dyes. Since myelin sheaths are lipid-rich structures which generate strong third-harmonic signals, in this paper, we perform a detailed comparative experimental study of both third-harmonic generation (THG) and 3PF imaging in the mouse digital skin in vivo. Our results show that THG imaging also enables visualization of myelin sheaths deep in the mouse digital skin, which shows colocalization with 3PF signals from labeled myelin sheaths. Besides its superior label-free advantage, THG does not suffer from photobleaching due to its 3PF property.

Funder

National Natural Science Foundation of China

the Science and Technology Innovation Commission of Shenzhen under

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3