Nonlinear scanning structured illumination microscopy based on nonsinusoidal modulation

Author:

Wang Meiting1,Wang Lei1,Zheng Xiaomin1,Zhou Jie1,Chen Jiajie1ORCID,Zeng Youjun1,Qu Junle1,Shao Yonghong1,Gao Bruce Zhi2

Affiliation:

1. College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China

2. Department of Bioengineering and COMSET, Clemson University, Clemson, SC 29634, USA

Abstract

Structured illumination microscopy (SIM) is an essential super-resolution microscopy technique that enhances resolution. Several images are required to reconstruct a super-resolution image. However, linear SIM resolution enhancement can only increase the spatial resolution of microscopy by a factor of two at most because the frequency of the structured illumination pattern is limited by the cutoff frequency of the excitation point spread function. The frequency of the pattern generated by the nonlinear response in samples is not limited; therefore, nonlinear SIM (NL-SIM), in theory, has no inherent limit to the resolution. In the present study, we describe a two-photon nonlinear SIM (2P-SIM) technique using a multiple harmonics scanning pattern that employs a composite structured illumination pattern, which can produce a higher order harmonic pattern based on the fluorescence nonlinear response in a 2P process. The theoretical models of super-resolution imaging were established through our simulation, which describes the working mechanism of the multi-frequency structure of the nonsinusoidal function to improve the resolution. The simulation results predict that a 5-fold improvement in resolution in the 2P-SIM is possible.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Science and Technology Planning Project of Shenzhen Municipality

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3