A simple Bessel module with tunable focal depth and constant resolution for commercial two-photon microscope

Author:

Mo Ting1,Liu Yiran2ORCID,Bie Fatao1,Dai Zimin1,Chang Jin1ORCID,Gong Hui123,Zhou Wei123

Affiliation:

1. Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, P. R. China

2. MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China

3. Research Unit of Multimodal Cross Scale, Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI Suzhou, P. R. China

Abstract

The volumetric imaging of two-photon microscopy expands the focal depth and improves the throughput, which has unparalleled superiority for three-dimension samples, especially in neuroscience. However, emerging in volumetric imaging is still largely customized, which limits the integration with commercial two-photon systems. Here, we analyzed the key parameters that modulate the focal depth and lateral resolution of polarized annular imaging and proposed a volumetric imaging module that can be directly integrated into commercial two-photon systems using conventional optical elements. This design incorporates the beam diameter adjustment settings of commercial two-photon systems, allowing flexibility to adjust the depth of focus while maintaining the same lateral resolution. Further, the depth range and lateral resolution of the design were verified, and the imaging throughput was demonstrated by an increase in the number of imaging neurons in the awake mouse cerebral cortex.

Funder

STI2030-Major Projectst

Innovative Research Group Project of the National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

National Foundation for Medical Research and Innovation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3