Study on response of metal wire in thermoacoustic imaging

Author:

Liang Zheng1,Wang Weipeng1,Qiao Shuaiqi1,Huang Lin2

Affiliation:

1. School of Electronic Science and Engineering, (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 611731, P. R. China

2. Center for Information in Medicine, University of Electronic and Technology of China, Chengdu 611731, P. R. China

Abstract

Thermoacoustic imaging (TAI) is an emerging high-resolution and high-contrast imaging technology. In recent years, metal wires have been used in TAI experiments to quantitatively evaluate the spatial resolution of different systems. However, there is still a lack of analysis of the response characteristics and principles of metal wires in TAI. Through theoretical and simulation analyses, this paper proposes that the response of metal (copper) wires during TAI is equivalent to the response of antennas. More critically, the response of the copper wire is equivalent to the response of a half-wave dipole antenna. When its length is close to half the wavelength of the incident electromagnetic wave, it obtains the best response. In simulation, when the microwave excitation frequencies are 1.3[Formula: see text]GHz, 3.0[Formula: see text]GHz, and 5.3[Formula: see text]GHz, and the lengths of copper wires are separately set to 11[Formula: see text]cm, 5[Formula: see text]cm, and 2.5[Formula: see text]cm, the maximum SAR distribution and energy coupling efficiency are obtained. This result is connected with the best response of half-wave dipole antennas with lengths of 11[Formula: see text]cm, 4.77[Formula: see text]cm, and 2.7[Formula: see text]cm under the theoretical design, respectively. Regarding the further application, TAI can be used to conduct guided minimally invasive surgery on surgical instrument imaging. Thus, this paper indicated that results can also guide the design of metal surgical instruments utilized in different microwave frequencies.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3