Fusion of clathrin and caveolae endocytic vesicles revealed by line-switching dual-color STED microscopy

Author:

Ruan Hefei1,Yu Jianqiang1,Wu Yayun1,Tang Xiaojun1,Yuan Jinghe1ORCID,Fang Xiaohong12

Affiliation:

1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

2. University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Abstract

Clathrin- and caveolae-mediated endocytosis are the most commonly used pathways for the internalization of cell membrane receptors. However, due to their dimensions are within the diffraction limit, traditional fluorescence microscopy cannot distinguish them and little is known about their interactions underneath cell membrane. In this study, we proposed the line-switching scanning imaging mode for dual-color triplet-state relaxation (T-Rex) stimulated emission depletion (STED) super-resolution microscopy. With this line-switching mode, the cross-talk between the two channels, the side effects from pulse picker and image drift in frame scanning mode can be effectively eliminated. The dual-color super-resolution imaging results in mixed fluorescent beads validated the excellent performance. With this super-resolution microscope, not only the ring-shaped structure of clathrin and caveolae endocytic vesicles, but also their semi-fused structures underneath the cell membrane were distinguished clearly. The resultant information will greatly facilitate the study of clathrin- and caveolae-mediated receptor endocytosis and signaling process and also our home-built dual-color T-Rex STED microscope with this line-switching imaging mode provides a precise and convenient way to study subcellular-scale protein interactions.

Funder

CAS Key Technology Talent Program

Instrument Incubation Program of Institute of Chemistry, CAS

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Postdoctoral Research Foundation of China

Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences and Peking Union Medical College

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3