SPECHT: Self-tuning Plausibility based object detection Enables quantification of Conflict in Heterogeneous multi-scale microscopy

Author:

Cardoen BenORCID,Wong Timothy,Alan Parsa,Lee SieunORCID,Matsubara Joanne AikoORCID,Nabi Ivan Robert,Hamarneh GhassanORCID

Abstract

Identification of small objects in fluorescence microscopy is a non-trivial task burdened by parameter-sensitive algorithms, for which there is a clear need for an approach that adapts dynamically to changing imaging conditions. Here, we introduce an adaptive object detection method that, given a microscopy image and an image level label, uses kurtosis-based matching of the distribution of the image differential to express operator intent in terms of recall or precision. We show how a theoretical upper bound of the statistical distance in feature space enables application of belief theory to obtain statistical support for each detected object, capturing those aspects of the image that support the label, and to what extent. We validate our method on 2 datasets: distinguishing sub-diffraction limit caveolae and scaffold by stimulated emission depletion (STED) super-resolution microscopy; and detecting amyloid-β deposits in confocal microscopy retinal cross-sections of neuropathologically confirmed Alzheimer’s disease donor tissue. Our results are consistent with biological ground truth and with previous subcellular object classification results, and add insight into more nuanced class transition dynamics. We illustrate the novel application of belief theory to object detection in heterogeneous microscopy datasets and the quantification of conflict of evidence in a joint belief function. By applying our method successfully to diffraction-limited confocal imaging of tissue sections and super-resolution microscopy of subcellular structures, we demonstrate multi-scale applicability.

Funder

canadian institutes for health research

natural sciences and engineering research council

simon fraser university big data scholarship

canada foundation for innovation

british columbia knowledge development fund

brain canada

national institute of health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3