A refined analytical model for reconstruction problems in diffuse reflectance spectroscopy

Author:

Sergeeva Ekaterina1ORCID,Kurakina Daria1ORCID,Turchin Ilya1ORCID,Kirillin Mikhail1

Affiliation:

1. A. V. Gaponov-Grekhov Institute of Applied, Physics of the Russian Academy of Sciences, Ulyanov St. 46, 603950, Nizhny Novgorod, Russia

Abstract

A refined analytical model of spatially resolved diffuse reflectance with small source-detector separations (SDSs) for the in vivo skin studies is proposed. Compared to the conventional model developed by Farrell et al., it accounts for the limited acceptance angle of the detector fiber. The refined model is validated in the wide range of optical parameters by Monte Carlo simulations of skin diffuse reflectance at SDSs of units of mm. Cases of uniform dermis and two-layered epidermis-dermis structures are studied. Higher accuracy of the refined model compared to the conventional one is demonstrated in the separate, constraint-free reconstruction of absorption and reduced scattering spectra of uniform dermis from the Monte Carlo simulated data. In the case of epidermis-dermis geometry, the recovered values of reduced scattering in dermis are overestimated and the recovered values of absorption are underestimated for both analytical models. Presumably, in the presence of a thin mismatched topical layer, only the effective attenuation coefficient of the bottom layer can be accurately recovered using a diffusion theory-based analytical model while separate reconstruction of absorption and reduced scattering fails due to the inapplicability of the method of images. These findings require implementation of more sophisticated models of light transfer in inhomogeneous media in the recovery algorithms.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3