Refractive index characteristics of edible oils based on spectrometry and effects of oil dispersion on OCT

Author:

Xu ShiJun1,Li XiaoKang1ORCID

Affiliation:

1. School of Science, Xi’an Technological University, Xi’an 710021, P. R. China

Abstract

It is necessary to investigate the wavelength-dependent variation rules of the refractive index of edible oils so as to explore the specificity of the dispersion in light propagation, imaging, and interference processes among different types of edible oil products. In this study, by deriving the refractive index equations of the double glass sheet holding device and oil, the reflectance spectra of three different types of oil samples, namely, peanut oil, colza oil, and kitchen waste oil, were measured via a spectrometer. Furthermore, the refractive index model of these different types of oil samples was investigated. Additionally, based on the oil dispersion characteristics, the dispersion of oil in optical coherence tomography (OCT) was compensated via deconvolution. In the wavelength range of [Formula: see text] (380, 1500)[Formula: see text]nm, the analytical expressions of the double glass sheet holding device and oils are featured by practical reliability. The refractive indexes of three different types of oils [Formula: see text] (1.38, 1.52) show normal dispersion characteristics. The Cauchy coefficient matrix of the oil refractive index can be used for oil identification; in particular, the healthy oil and waste oil differ significantly in terms of the Cauchy coefficient matrix in the infrared band. Oil dispersion has almost no influence on the phase spectra of oils but can enhance their amplitude spectra. The dispersion mismatch can be eliminated by calculating the convolution kernel. The envelope broadening factors of OCT interference signals of oil products are 0.84, 0.64, and 0.91, respectively. According to the present research results, the refractive index model of oil can effectively remove the influence of the holding device. The refractive indexes of three different types of oil samples show similar wavelength-dependent variation characteristics, which confirms the existence of many correlated components in these oil samples. The established refractive index model of oil in a wide spectral range, from the ultraviolet to the infrared band, can be adequately employed for identifying different types of oils. The numerical dispersion compensation based on the established refractive index model can enhance the axial resolution in OCT imaging.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3