Quantum oblivion: A master key for many quantum riddles

Author:

Elitzur Avshalom C.1,Cohen Eliahu2

Affiliation:

1. Iyar, The Israeli Institute for Advanced Research, Rehovot, Israel

2. School of Physics and Astronomy, Tel Aviv University, Tel-Aviv 6997801, Israel

Abstract

A simple quantum interaction is analyzed, where the paths of two superposed particles asymmetrically cross, while a detector set to detect an interaction between them remains silent. Despite this negative result, the particles' states leave no doubt that a peculiar interaction has occurred: One particle's momentum is changed while the other's remains unaffected, in apparent violation of momentum conservation. Revisiting the foundations of the standard quantum measurement process offers the resolution. Prior to the macroscopic recording of no interaction, a brief critical interval (CI) prevails, during which the particles and the detector's pointer form a subtle entanglement which immediately dissolves. It is this self-cancellation, henceforth "quantum oblivion (QO)," that lies at the basis of some well-known intriguing quantum effects. Such is interaction-free measurement (IFM)1 and its more paradoxical variants like Hardy's Paradox2 and the quantum liar paradox.3 Even the Aharonov–Bohm (AB) effect4 and weak measurement (WM)5 turn out to belong to this group. We next study interventions within the CI that produce some other peculiar effects. Finally, we discuss some of the conceptual issues involved. Under a greater time-resolution of the CI, some non-local phenomena turn out to be local. Momentum is conserved due to the quantum uncertainties inflicted by the particle–pointer interaction, which sets the experiment's final boundary condition.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3