Two-way unclonable encryption with a vulnerable sender

Author:

Leermakers Daan1,Škorić Boris1

Affiliation:

1. Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands

Abstract

Unclonable Encryption, introduced by Gottesman in 2003 [Quantum Inform. Comput. 3 (2003) 581], is a quantum protocol that guarantees the secrecy of a successfully transferred classical message even when all keys leak at a later time. We propose an Unclonable Encryption protocol with the additional property that the sender’s key material is allowed to leak even in the case of an unsuccessful run. This extra feature makes it possible to achieve secure quantum encryption even when one of the parties is unable to protect its keys against after-protocol theft. Such an asymmetry occurs e.g. in case of server–client scenarios, where the client device is resource constrained and/or located in a hostile environment. Our protocol makes use of a bidirectional quantum channel in a manner similar to the two-way protocol LM05 [Phys. Rev. Lett. 94 (2005) 140501]. Bob sends random qubit states to Alice. Alice flips the states in a way that depends on the message and a shared key, and sends the resulting states back to Bob. Bob recovers Alice’s message by measuring the flips. We prove that our protocol satisfies the definition of unclonable encryption and additionally that the message remains secure even if all of Alice’s keys leak after the protocol. Furthermore, we show that some of the key materials can be safely re-used. Our security proof is formulated in terms of diamond norms, which makes it composable, and allows for noisy quantum channels. We work out the details only for the asymptotics in the limit of long messages. As a side result, we construct a two-way QKD scheme with a high key rate. We show that its key rate is higher than the rate of the two-way QKD scheme LM05 proven by Beaudry et al. [Phys. Rev. A 88 (2013) 062302] for the case of independent channel noise.

Funder

NWO

Publisher

World Scientific Pub Co Pte Ltd

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3