Uncloneable encryption

Author:

Gottesman D.

Abstract

Quantum states cannot be cloned. I show how to extend this property to classical messages encoded using quantum states, a task I call ``uncloneable encryption.'' An uncloneable encryption scheme has the property that an eavesdropper Eve not only cannot read the encrypted message, but she cannot copy it down for later decoding. She could steal it, but then the receiver Bob would not receive the message, and would thus be alerted that something was amiss. I prove that any authentication scheme for quantum states acts as a secure uncloneable encryption scheme. Uncloneable encryption is also closely related to quantum key distribution (QKD), demonstrating a close connection between cryptographic tasks for quantum states and for classical messages. Thus, studying uncloneable encryption and quantum authentication allows for some modest improvements in QKD protocols. While the main results apply to a one-time key with unconditional security, I also show uncloneable encryption remains secure with a pseudorandom key. In this case, to defeat the scheme, Eve must break the computational assumption behind the pseudorandom sequence before Bob receives the message, or her opportunity is lost. This means uncloneable encryption can be used in a non-interactive setting, where QKD is not available, allowing Alice and Bob to convert a temporary computational assumption into a permanently secure message.

Publisher

Rinton Press

Subject

Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How to Use Quantum Indistinguishability Obfuscation;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

2. Local simultaneous state discrimination;Physical Review A;2024-05-14

3. Quantum copy-protection of compute-and-compare programs in the quantum random oracle model;Quantum;2024-05-02

4. Tamper Detection against Unitary Operators;Quantum;2023-11-08

5. Uncloneable Cryptography;Communications of the ACM;2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3