NUMERICAL STUDY OF ELASTIC WAVE SCATTERING BY CRACKS OR INCLUSIONS USING THE BOUNDARY INTEGRAL EQUATION METHOD

Author:

LIU ENRU1,ZHANG ZHONGJIE2

Affiliation:

1. British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA, Scotland, UK

2. Institute of Geology and Geophysics, Chinese Academy of Sciences, 11 Datun Road, Beijing 100101, China

Abstract

In this paper, we use a 2-D elastodynamic boundary integral equation or boundary element method (BEM) to solve multiple scattering problems due to existence of cracks or inclusions. The method is based on the integral representation of a scattered wavefield by assuming a fictitious source distribution on the scattering objects or inclusions (i.e. mathematical description of Huygens' principle), and the fictitious source distribution can be found by matching appropriate boundary conditions at the boundary of the inclusions. The method is called indirect boundary element method. Three numerical examples are presented to demonstrate the versatility of the BEM method. The first example shows that different spatial arrangements of the same scatters lead to profound differences in scattering characteristics, in particular the frequency contents of the transmitted wavefields using the method of time-frequency analysis. The second example shows the effects of power-law or fractal distribution of scalelengths on transmitted wavefields, and we conclude that frequency characteristics, such as the frequency of the peak attenuation, can be related to spatial size parameters of the model. In the third example, we show that orientated inclusions with aspect ratio less than unity have strong effects on the amplitudes of transmitted waves, and this has an important implication in characterizing inclusions and fractures using azimuthal variation in amplitudes (or attenuation anisotropy).

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Acoustics and Ultrasonics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3