Laplace Domain Boundary Element Method for Structural Health Monitoring of Poly-Crystalline Materials at Micro-Scale

Author:

Marrazzo Massimiliano1ORCID,Sharif Khodaei Zahra1ORCID,Aliabadi M. H. Ferri1ORCID

Affiliation:

1. Department of Aeronautics, Imperial College London, London SW7 2AZ, UK

Abstract

This paper describes, for the first time, the application of an Elastodynamic Boundary Element Method (BEM) in Laplace Domain for the Structural Health Monitoring (SHM) of poly-crystalline materials. The study focuses on Ultrasonic Guided Wave (UGW) propagation and investigates the wave–material interactions at micro-scale. The study aims to investigate the interaction of UGWs with assessing micro-structural features such as grain size, morphology, degradation, and flaws. Numerical simulations of the most common micro-structural features demonstrate the accuracy and validity of the proposed method. Particular attention is paid to the study of porosity and its influence on material macro-properties. Different crystal morphologies such as cubic, rhombic, and truncated octahedral are considered. The detection of voids based on the changes in the amplitude and Time of Arrival (ToA) of the backscattered signal is investigated. The study also considers inter-granular cracks, which cause laceration, and examines flaw position/orientation, length, and distance from a specific reference. Furthermore, a framework is proposed for generating Probability of Detection (PoD) curves using numerical simulations. Experimental tests in pristine conditions are shown to be in good agreement with the numerical simulations in terms of ToA, signal amplitude, and wave velocity. The numerical simulations provide insights into wave propagation and wave–material interactions, including different types of defects at the micro-scale. Overall, the BEM and UGW methods are shown to be effective tools for better understanding micro-structural features and their influence on the macro-structural properties of poly-crystalline materials.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3