Modeling of Crosstalk Induced Effects in Copper-Based Nanointerconnects: An ABCD Parameter Matrix-Based Approach

Author:

Sahoo Manodipan1,Rahaman Hafizur1

Affiliation:

1. Department of Information Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India

Abstract

Aggressive miniaturization has led to severe performance and signal integrity issues in copper-based interconnects in the nanometric regime. As a consequence, development of a proper analytical model for such interconnects is extremely important. In this work, an ABCD parameter matrix-based model is presented for fast and accurate estimation of crosstalk delay and noise for identically coupled copper-based nanointerconnect systems. Using the proposed model, the crosstalk delay and noise are estimated in copper based nanointerconnects for intermediate and global interconnects at the future integrated circuit technology nodes of 21 and 15 nm, respectively. Proposed model has been compared with SPICE and it is found that this model is almost 100% accurate as SPICE with respect to both the crosstalk delay as well as noise. Moreover, this model is as much as ~ 63 and ~ 155 times faster, respectively. From the crosstalk delay and noise analysis of unrepeated interconnects, it is observed that both delay and noise contribution will increase in scaled technology nodes. The same trend is observed also for the repeated interconnects. Also more number of repeaters and higher repeater sizes will be needed for delay minimization as we scale deeper. So as far as crosstalk induced effects are concerned, the copper interconnects will face a huge challenge to overcome in nanometer technology nodes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3