Tunnel Transistor-Based Reliable and Energy Efficient Computing Architectures with Circuit and Architectural Co-Design at Low VDD

Author:

Shaik Sadulla1,Krishna K. Sri Rama2,Vaddi Ramesh3

Affiliation:

1. Department of Electronics and Communication Engineering, V.F.S.T.R University, Vadlamudi 522213, Guntur, Andhra Pradesh, India

2. Department of Electronics and Communication Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada 520007, Andhra Pradesh, India

3. Department of Electronics and Communication Engineering, D.S.P.M International Institute of Information Technology, Naya Raipur 492002, Chhattisgarh, India

Abstract

Tunnel field-effect transistors (TFETs) as low voltage device options have attracted recent attention for energy efficient circuit designs with CMOS technology scaling. This paper presents the circuit and architectural co-design approach for designing reliable and energy efficient architectures (adder cells) for new computing platforms at supply voltages. At circuit level TFET-based 28-transistor static logic design (28T) and 24-transistor transmission gate logic design (24T) have been explored. At architectural level, multiplexer (MUX)-based 22-transistor full adder design (22T) is proposed. Performance of TFET-based architectures have also been benchmarked with 20[Formula: see text]nm double gate Si FinFET technology. It has been seen that with FinFET technology 24T design is not effective in terms of energy efficiency and reliability (due to the large leakage currents in transmission gate logic topology). 28T design is the best in reliability perspective (in terms of reduced over shoots, full logic swing and reduced glitch duration etc.) and 22T design to be energy efficient option. It has been demonstrated in this paper that TFET’s steep slope characteristics enable the 24T design to have similar reliability characteristics like 28T design and energy efficiency like 22T design. TFET-based 22T design has [Formula: see text]91% smaller energy delay product (EDP) and [Formula: see text]84.4% less power delay product (PDP) in comparison to the low threshold voltage (LVT) FinFET 22T design at 0.2[Formula: see text]V VDD.

Funder

Department of Biotechnology, Ministry of Science and Technology

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3