Affiliation:
1. Department of Electrical Engineering, Macquarie University, Sydney, NSW 2109, Australia
Abstract
The safety of cryptosystems, mainly based on algorithmic improvement, is still vulnerable to side-channel attacks (SCA) based on machine learning. Multi-class classification based on neural networks and principal components analysis (PCA) can be powerful tools for pattern recognition and classification of side-channel information. In this paper, an experimental investigation was conducted to explore the efficiency of various architectures of feed-forward back-propagation (FFBP) neural networks and PCA against side-channel attacks. The experiment is performed on the data leakage of an FPGA implementation of elliptic curve cryptography (ECC). Our results show that the proposed method is a promising method for SCA with an overall accuracy of 88% correct classification.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献