Increasing the Accuracy of Soil Nutrient Prediction by Improving Genetic Algorithm Backpropagation Neural Networks

Author:

Liu Yanqing,Jiang Cuiqing,Lu Cuiping,Wang Zhao,Che Wanliu

Abstract

Soil nutrient prediction has been eliciting increasing attention in agricultural production. Backpropagation (BP) neural networks have demonstrated remarkable ability in many prediction scenarios. However, directly utilizing BP neural networks in soil nutrient prediction may not yield promising results due to the random assignment of initial weights and thresholds and the tendency to fall into local extreme points. In this study, a BP neural network model optimized by an improved genetic algorithm (IGA) was proposed to predict soil nutrient time series with high accuracy. First, the crossover and mutation operations of the genetic algorithm (GA) were improved. Next, the IGA was used to optimize the BP model. The symmetric nature of the model lies in its feedforward and feedback connections, i.e., the same weights must be used for the forward and backward passes. An empirical evaluation was performed using annual soil nutrient data from China. Soil pH, total nitrogen, organic matter, fast-acting potassium, and effective phosphorus were selected as evaluation indicators. The prediction results of the IGA–BP, GA–BP, and BP neural network models were compared and analyzed. For the IGA–BP prediction model, the coefficient of determination for soil pH was 0.8, while those for total nitrogen, organic matter, fast-acting potassium, and effective phosphorus were all greater than 0.98, exhibiting a strong generalization ability. The root-mean-square errors of the IGA–BP prediction models were reduced to 50% of the BP models. The results indicated that the IGA–BP method can accurately predict soil nutrient content for future time series.

Funder

Science and Technology Major Special Project of Anhui Province

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference28 articles.

1. Improving soil fertility and building sustainable agriculture;Tian;Tu Rang Fei Liao,2016

2. Precision agriculture: Development benefits, international experience and China’s practice;Fang;Agric. Econ.,2018

3. Mid-infrared spectroscopic determination of soil nitrate content;Jahn;J. Biosyst. Eng.,2006

4. Design of soil nutrient content prediction model based on big data statistics;Wang;Mod. Electron. Tech.,2020

5. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review;Chlingaryan;Comput. Electron. Agric.,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3