Time-Domain Readout of 1T–1C DRAM Cells

Author:

Sharroush Sherif M.1

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering, Port Said University, Port Said, Egypt

Abstract

The conventional readout of one-transistor–one-capacitor dynamic random-access memories (1T–1C DRAMs) depends on using a sense amplifier to develop the bitline voltage and settle it to the voltage of the power supply, [Formula: see text], or to 0[Formula: see text]V depending on whether the stored data is “1” or “0,” respectively. However, using the sense amplifier makes the reading process sluggish. In this paper, a capacitive-voltage divider-based readout scheme is proposed. According to this scheme, the developed bitline voltage is converted into a pulse with a certain starting time. Specifically, this pulse appears at a later time in case of “0” storage than that if a “1” is stored, thus the proposed scheme is aptly called “time-domain readout.” The effects of parameter and component mismatches and technology scaling on the proposed scheme are investigated. The proposed scheme is analyzed quantitatively with a suggestion given to widen the time gap between the starting times of the pulses corresponding to the “0” and “1” states. The proposed scheme is verified by simulation adopting the 45 nm CMOS technology with [Formula: see text][Formula: see text]V. According to the simulation results, percentage savings of 68.8%, 56.8%, and 32% in the read-access time, the read-cycle time, and the average power-delay product, respectively, are shown. The proposed scheme requires approximately 40% extra area overhead for the reading circuitry. Also, a noise analysis is performed and it is found that the device noise does not affect the proposed scheme significantly.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proposed time‐mode wide fan‐in NAND and NOR gates;International Journal of Circuit Theory and Applications;2023-05-03

2. High-Performance Logic and Memory Devices Based on a Dual-Gated MoS2 Architecture;ACS Applied Electronic Materials;2019-12-13

3. A predischarged bitline 1T-1C DRAM readout scheme;Microelectronics Journal;2019-01

4. A novel low-latency DRAM based on the bitline-discharge rate;International Journal of Electronics;2018-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3