DESIGN OF 64-BIT SQUARER BASED ON VEDIC MATHEMATICS

Author:

SAHA PRABIR1,KUMAR DEEPAK2,BHATTACHARYYA PARTHA3,DANDAPAT ANUP1

Affiliation:

1. Department of Electronics and Communication Engineering, National Institute of Technology, Meghalaya-793003, India

2. Department of Computer Science and Engineering, National Institute of Technology, Meghalaya-793003, India

3. Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology, Shibpur Howrah-711103, India

Abstract

"Vedic mathematics" is the ancient methodology of mathematics which has a unique technique of calculations based on 16 "sutras" (formulae). A Vedic squarer design (ASIC) using such ancient mathematics is presented in this paper. By employing the Vedic mathematics, an (N × N) bit squarer implementation was transformed into just one small squarer (bit length ≪ N) and one adder which reduces the handling of the partial products significantly, owing to high speed operation. Propagation delay and dynamic power consumption of a squarer were minimized significantly through the reduction of partial products. The functionality of these circuits was checked and performance parameters like propagation delay and dynamic power consumption were calculated by spice spectre using 90-nm CMOS technology. The propagation delay of the proposed 64-bit squarer was ~ 16 ns and consumed ~ 6.79 mW power for a layout area of ~ 5.39 mm2. By combining Boolean logic with ancient Vedic mathematics, substantial amount of partial products were eliminated that resulted in ~ 12% speed improvement (propagation delay) and ~ 22% reduction in power compared with the mostly used Vedic multiplier (Nikhilam Navatascaramam Dasatah) architecture.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Organized Literature Review on Various Cubic Root Algorithmic Practices for Developing Efficient VLSI Computing System—Understanding Complexity;Artificial Intelligence Applications and Reconfigurable Architectures;2023-02-10

2. Efficient Design of Vedic Square Calculator using Quantum dot Cellular Automata (QCA);IEEE Transactions on Circuits and Systems II: Express Briefs;2021

3. Vedic algorithm for cubic computation and VLSI implementation;Engineering Science and Technology, an International Journal;2017-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3