In-Network Distributed Least-Mean-Square Identification of Nonlinear Systems Using Volterra–Laguerre Model

Author:

Gupta Saurav1ORCID,Kapgate Sachin N.1,Sahoo Ajit Kumar1

Affiliation:

1. Department of Electronics and Communication Engineering, National Institute of Technology, Rourkela, Rourkela 769008, Odisha, India

Abstract

It is of great importance to model the behavior of nonlinear systems in a distributed fashion using wireless sensor networks (WSNs) because of its computation and energy-efficient data processing. However, least squares methods have been previously employed to estimate the parameters of Volterra model for modeling nonlinear systems. Still, it is more convenient and advantageous to use in-network distributed identification strategy for real-time modeling and control. In this context, a black-box model with generalized structure and remarkable modeling ability called Volterra–Laguerre model is considered in which distributed signal processing is employed to identify the nonlinear systems in a distributed manner. The model cost function is expressed as a separable constrained minimization problem which is decomposed into augmented Lagrangian form to facilitate the distributed optimization. Then, alternating direction method of multipliers is employed to estimate the optimal parameters of the model. Convergence of the algorithm is guaranteed by providing its mean stability analysis. Simulation results for a nonlinear system are obtained under the noisy environment. These results are plotted against the results of noncooperative and centralized methods, demonstrating the effectiveness and superior performance of the proposed algorithm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parametric Identification Algorithm Using Chebyshev–Laguerre Functions;Studies in Infrastructure and Control;2021-09-29

2. Energy Efficient Distributed Volterra Modeling Approach with ADMM-Based Sparse Signal Recovery;Wireless Personal Communications;2021-07-10

3. Design of Lagrangian-Based FOPID Controller for Desired Closed Loop System;Journal of Circuits, Systems and Computers;2021-02-20

4. AISS for Road Anomaly Detection using WSN-Based Distributed Strategy;2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS);2019-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3