Affiliation:
1. Department of Computer Science, Gwinnett Tech. ANF Campus, Alpharetta, GA 30009, United States
2. Department of Electrical Engineering, Bahria University, Islamabad, Pakistan
Abstract
Internet of Things (IoTs) are becoming one of the integral parts of our lives, as all of the modern devices including pervasive systems use internet for its connectivity with the rest of the world. The Radio Frequency IDentification (RFID) provides unique identification and nonline of sight capabilities, therefore plays a very important role in development of IoTs. However, the RFID systems incorporate wireless channel for communication, therefore have some allied risks to the system from threat agents. In order to prevent the system from malicious activities in a cost effective way, numerous Ultralightweight Mutual Authentication Protocols (UMAPs) have been proposed since last decade. These UMAPs mainly involve simple bitwise logical operators such as XOR, AND, OR, etc., in their designs and can be implemented with extremely low cost RFID tags. However, most of the UMAP designers didn’t provide the proper hardware approximations of their UMAPs and presented only theoretical results which mostly mislead the reader. In this paper, we have addressed this problem by reporting our experiences with FPGA and ASIC-based implementation of UMAP named psuedo Kasami code-based Mutual Authentication Protocol (KMAP[Formula: see text]. Further, we have also improved the structure of the KMAP protocol to overcome the previously highlighted attack model. The hardware implementation results show that KMAP[Formula: see text] successfully conform to EPC-C1G2 tags and can be implemented using less than 4[Formula: see text]K GE (for 32-bit word length).
Funder
Bahria University, Islamabad
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献