VLIW DSP-Based Low-Level Instruction Scheme of Givens QR Decomposition for Real-Time Processing

Author:

Najoui Mohamed1,Bahtat Mounir1,Hatim Anas2,Belkouch Said1,Chabini Noureddine3

Affiliation:

1. LGECOS Lab, ENSA-Marrakech, University of Cadi Ayyad, Marrakech, Morocco

2. ENSA-Agadir, Ibn Zohr University, Agadir, Morocco

3. Department of Electrical and Computer Engineering, Royal Military College of Canada, Kingston, ON, Canada K7K 7B4, Canada

Abstract

QR decomposition (QRD) is one of the most widely used numerical linear algebra (NLA) kernels in several signal processing applications. Its implementation has a considerable and an important impact on the system performance. As processor architectures continue to gain ground in the high-performance computing world, QRD algorithms have to be redesigned in order to take advantage of the architectural features on these new processors. However, in some processor architectures like very large instruction word (VLIW), compiler efficiency is not enough to make an effective use of available computational resources. This paper presents an efficient and optimized approach to implement Givens QRD in a low-power platform based on VLIW architecture. To overcome the compiler efficiency limits to parallelize the most of Givens arithmetic operations, we propose a low-level instruction scheme that could maximize the parallelism rate and minimize clock cycles. The key contributions of this work are as follows: (i) New parallel and fast version design of Givens algorithm based on the VLIW features (i.e., instruction-level parallelism (ILP) and data-level parallelism (DLP)) including the cache memory properties. (ii) Efficient data management approach to avoid cache misses and memory bank conflicts. Two DSP platforms C6678 and AK2H12 were used as targets for implementation. The introduced parallel QR implementation method achieves, in average, more than 12[Formula: see text] and 6[Formula: see text] speedups over the standard algorithm version and the optimized QR routine implementations, respectively. Compared to the state of the art, the proposed scheme implementation is at least 3.65 and 2.5 times faster than the recent CPU and DSP implementations, respectively.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3