Affiliation:
1. Department of Electronics Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
Abstract
This paper introduces for the first time all the steps required in the optimal design of carbon nanotube field-effect transistor (CNTFET)-based second generation current conveyor (CCII) using transconductance-to-drain current ratio ([Formula: see text]) technique for low-voltage (LV) and low-power (LP) applications. The [Formula: see text] technique is a well-established methodology for CMOS analog IC design. However, the difference between CMOS and CNTFET is that CMOS has continuous width while the width of CNTFET is discrete and depends on different parameters like the number of tubes, pitch and diameter ([Formula: see text]) of the carbon nanotube (CNT). Therefore, there is a need for a design technique by which one can easily design analog circuits using CNTFETs. The CCII is based on two-stage op-amp and two inverters used as class AB amplifiers. The performance of CCII has been extensively examined in terms of DC, AC and transient responses of node voltages, branch currents and node impedances using HSPICE simulations. The CCII operates at [Formula: see text]0.5[Formula: see text]V and has 172[Formula: see text][Formula: see text]W of power consumption. The designed CCII provides very high 3-dB bandwidth (BW) for current gain ([Formula: see text][Formula: see text]GHz as well as voltage gain ([Formula: see text][Formula: see text]GHz.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献