HIGH THROUGHPUT FILTER ARCHITECTURE FOR OPTIMAL FPGA-BASED IMPLEMENTATIONS

Author:

KAMBOH HAMID M.1,KHAN SHOAB A.2

Affiliation:

1. Electrical and Computer Engineering Department, Centre for Advanced Studies in Engineering, 19 Ataturk Avenue, G 5/1, Islamabad 44000, Pakistan

2. Centre for Advanced Research in Engineering, 19 Ataturk Avenue, G 5/1, Islamabad 44000, Pakistan

Abstract

Modern field programmable gate arrays (FPGAs) offer built in support for efficient implementation of signal processing algorithms in the form of specialized embedded blocks such as high speed carry chains, specialized shift registers, adders, multiply accumulators (MAC) and block memories. These dedicated elements provide increased computational power and are used for efficient implementation of computationally extensive algorithms. This paper proposes a novel algorithm and architecture for the design and implementation of high performance intermediate frequency (IF) filters on FPGAs. In this research, we have proposed innovative design methodologies for generation of optimal feed forward and recursive architectures to be mapped on a family of FPGAs. Keeping in perspective the limited number of registers within the embedded blocks, the new methodology applies transformations to achieve higher throughput by applying various optimizations to the design algorithm. Implementation options include systolic MAC, transpose direct form MAC, canonic signed digit and distributed arithmetic based filters to suite the most economical FPGA implementation. The paper demonstrates the methodology and shows its applicability by synthesizing the designs and comparing the results to a number of traditional architectures and intellectual property cores. Using Xilinx Virtex-5 FPGA, our results show a throughput improvement between 7% and 30% with an average improvement of 16% over traditional implementations of these designs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3