An Efficient Design for Area-Efficient Truncated Adaptive Booth Multiplier for Signal Processing Applications

Author:

Radhakrishnan S.1ORCID,Karn Rakesh Kumar2,Nirmalraj T.3

Affiliation:

1. School of Electrical and Electronics, SASTRA Deemed to be University, Thanjavur, Tamilnadu - 613401, India

2. School of Electrical & Electronics Engineering, SASTRA Deemed University, India

3. SASTRA Deemed University, Thanjavur, India

Abstract

In digital signal processing (DSP), the most valuable elements of processing architecture are multiplier. The conventional partial products array is to create extra rows and columns. Generally, the fixed multiplication products are truncated to [Formula: see text] bits. In this paper, we introduced an adaptive booth multiplier concept, which is based on truncated multiplication procedure. The extra partial product array is to create the complexities. In the higher order of partial product array, the deletion of LSB and the nongeneration of initial products are achieved. We added compensation bits at the appropriate retained bit position to minimize the error due to nongeneration and omission. Here, our proposed work is used to reduce the overhead and the complexity of partial product array. The proposed concept architecture is implemented in Verilog HDL software; also the design of RTL is manufactured. For experimental work, the bit multiplication of [Formula: see text] with 8, 10, 12, 14 and 16 bits is used. The proposed method of truncated based adaptive booth encoding has shown the lower value results of area, delay and power consumption. The error performances are executed by various error normalizations. Finally, the proposed concept performance is checked with various state-of-art multiplier methodologies such as carry width multiplier, Vedic multiplier, voltage-mode multiplier and Wallace multiplier. In every bit value, the proposed booth encoding multiplier delivers better and optimal performance result.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3