Iterative Fusion and Dual Enhancement for Accurate and Efficient Object Detection

Author:

Duan Zhipeng1ORCID,Zhang Zhiqiang2,Liu Xinzhi1,Cheng Guoan1,Xu Liangfeng1,Zhan Shu1ORCID

Affiliation:

1. Key Laboratory of Knowledge Engineering with Big Data, Ministry of Education, School of Computer Science and Information, Engineering, Hefei University of Technology, Hefei 230000, P. R. China

2. The Second Hospital of Anhui Medical University, Hefei 230000, P. R. China

Abstract

Single Shot Multibox Detector (SSD) uses multi-scale feature maps to detect and recognize objects, which considers the advantages of both accuracy and speed, but it is still limited to detecting small-sized objects. Many researchers design new detectors to improve the accuracy by changing the structure of the multi-scale feature pyramid which has proved very useful. But most of them only simply merge several feature maps without making full use of the close connection between features with different scales. In contrast, a novel feature fusion module and an effective feature enhancement module is proposed, which can significantly improve the performance of the original SSD. In the feature fusion module, the feature pyramid is produced through iteratively fusing three feature maps with different receptive fields to obtain contextual information. In the feature enhancement module, the features are enhanced along the channel and spatial dimensions at the same time to improve their expression ability. Our network can achieve 82.5% mean Average Precision (mAP) on the VOC 2007 [Formula: see text], 81.4% mAP on the VOC 2012 [Formula: see text] and 34.8% mAP on COCO [Formula: see text]-[Formula: see text]2017, respectively, with the input size [Formula: see text]. Comparative experiments prove that our method outperforms many state-of-the-art detectors in both aspects of accuracy and speed.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3