A Cloud Computing-Based Approach for Efficient Processing of Massive Machine Tool Diagnosis Data

Author:

Li Heng1,Zhang Xiaoyang1,Tao Shuyin1ORCID

Affiliation:

1. School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, P. R. China

Abstract

This paper proposes a cloud computing-based approach to efficiently process the massive data produced in intelligent machine tool diagnosis flow. By collecting and extracting the vibration, power and other useful system signals during the machining operation of machine tools, the cutting process samples and cutting gap samples of machine tools can be accurately segmented, in order to construct a set of signal samples that can effectively and completely characterize the level of tool wear. We propose a visual detection method that relies on local threshold segmentation to predict tool wear status. The machine tool image is divided into several small blocks, and each image block is segmented to obtain the segmentation threshold, which is defined as the local threshold of each block. Then, the detection method scans the whole image based on the maximum local threshold among all blocks. Considering the complicated flow of visual detection and the high volume of machine tool diagnosis data, we further propose a big data processing approach which is implemented on a cloud computing architecture. By modeling the workflow of the proposed visual detection method as a directed acyclic graph, we develop a scheduling model that aims at minimizing the execution time of massive tool diagnosis data processing with available cloud computing resources. A effective metaheuristic based on search strategy of artificial bee colony is developed to solve the formulation scheduling problem. Experimental results on a cloud-based system demonstrate that, the visual detection method enhances the accuracy of tool wear detection, and the cloud-based approach significantly reduces the execution time of tool diagnosis flow by means of distributed computing.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3