Abstract
This article presents a cloud-based system for the on-line monitoring of tool conditions in end milling. The novelty of this research is the developed system that connects the IoT (Internet of Things) platform for the monitoring of tool conditions in the cloud to the machine tool and optical system for the detection of cutting chip size. The optical system takes care of the acquisition and transfer of signals regarding chip size to the IoT application, where they are used as an indicator for the determination of tool conditions. In addition, the novelty of the presented approach is in the artificial intelligence integrated into the platform, which monitors a tool’s condition through identification of the current cutting force trend and protects the tool against excessive loading by correcting process parameters. The practical significance of the research is that it is a new system for fast tool condition monitoring, which ensures savings, reduces investment costs due to the use of a more cost-effective sensor, improves machining efficiency and allows remote process monitoring on mobile devices. A machining test was performed to verify the feasibility of the monitoring system. The results show that the developed system with an ANN (artificial neural network) for the recognition of cutting force patterns successfully detects tool damage and stops the process within 35 ms. This article reports a classification accuracy of 85.3% using an ANN with no error in the identification of tool breakage, which verifies the effectiveness and practicality of the approach.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献