A Statistical Test Generation Based on Mutation Analysis for Improving the Hardware Trojan Detection

Author:

Liu Yanjiang1ORCID,Zhao Yiqiang1,He Jiaji1,Xin Ruishan1

Affiliation:

1. School of Microelectronics, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin 300072, P. R. China

Abstract

Hardware Trojan has become a major threat to the security and trustworthiness of integrated circuit (IC) employed in critical applications. Due to the presence of process variations and measurement noises, all existing side-channel Trojan detection approaches suffer from low detection sensitivity or even false negatives with increasing circuit size and decreasing Trojan size. In this paper, we propose a statistical test generation approach based on mutation analysis, which generates a set of test vectors aiming at activating the hardware Trojan inserted into the low activity nodes. Such approach not only enhances the controllability of low activity nodes through increasing the switching activity of it, but also improves the observability by propagating the artificial designed errors introduced by the mutant to the outputs. Simulation results of a set of ISCAS’85 and ISCAS’89 benchmark circuits show that the proposed approach improves the activity of low activity nodes 463% at most compared with the Multiple Excitation of Rare Occurrence (MERO) approach and increases the Trojan coverage with 84.08% reduction in test length. Moreover, the test vectors generated by the proposed approach and the MERO approach, respectively, are exerted to the circuit under test. Experimental results demonstrate that the Mahalanobis distance margin of the proposed approach is much greater than the MERO approach, and thus provide a comparable robustness with decreasing Trojan size.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3