Affiliation:
1. Computer Engineering and Information Technology Department, Amirkabir University of Technology, Tehran, Iran
Abstract
During the last few years, hardware Trojan horses (HTHs) have become one of the most important threats to the security of very large scale integrated (VLSI) chips. Many efforts have been made to facilitate the process of HTH detection, mostly based on the power analysis of chips. The techniques would be more beneficial if trust-driven techniques are used during the system design. Whereas design for hardware trust (DFHT) is one of the fields of interest, most current approaches include ad-hoc and gate-level design techniques. This paper discusses the advantage of physical-level design approaches with integrated strategies for improving the HTH-detection probability. As a proof of concept, a placement technique is presented with the goal of enhancing the ability of HTH detection techniques based on local power signal analysis. Our results show that the background effects on power pads can be leveraged by a simple partitioning-based placement algorithm. Minimizing the background effects leads to a better Trojan-to-background-effect ratio and more (by about 1.7 times) Trojan detectability.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献