RDMKE: Applying Reuse Distance Analysis to Multiple GPU Kernel Executions

Author:

Kiani Mohsen1,Rajabzadeh Amir1ORCID

Affiliation:

1. Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran

Abstract

Modern GPUs can execute multiple kernels concurrently to keep the hardware resources busy and to boost the overall performance. This approach is called simultaneous multiple kernel execution (MKE). MKE is a promising approach for improving GPU hardware utilization. Although modern GPUs allow MKE, the effects of different MKE scenarios have not adequately studied by the researchers. Since cache memories have significant effects on the overall GPU performance, the effects of MKE on cache performance should be investigated properly. The present study proposes a framework, called RDMKE (short for Reuse Distance-based profiling in MKEs), to provide a method for analyzing GPU cache memory performance in MKE scenarios. The raw memory access information of a kernel is first extracted and then RDMKE enforces a proper ordering to the memory accesses so that it represents a given MKE scenario. Afterward, RDMKE employs reuse distance analysis (RDA) to generate cache-related performance metrics, including hit ratios, transaction counts, cache sets and Miss Status Holding Register reservation fails. In addition, RDMKE provides the user with the RD profiles as a useful locality metric. The simulation results of single kernel executions show a fair correlation between the generated results by RDMKE and GPU performance counters. Further, the simulation results of 28 two-kernel executions indicate that RDMKE can properly capture the nonlinear cache behaviors in MKE scenarios.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3