Efficient Cache Performance Modeling in GPUs Using Reuse Distance Analysis

Author:

Kiani Mohsen1,Rajabzadeh Amir1ORCID

Affiliation:

1. Razi University, Taghe-Bostan, Kermanshah, Iran

Abstract

Reuse distance analysis (RDA) is a popular method for calculating locality profiles and modeling cache performance. The present article proposes a framework to apply the RDA algorithm to obtain reuse distance profiles in graphics processing unit (GPU) kernels. To study the implications of hardware-related parameters in RDA, two RDA algorithms were employed, including a high-level cache-independent RDA algorithm, called HLRDA, and a detailed RDA algorithm, called DRDA. DRDA models the effects of reservation fails in cache blocks and miss status holding registers to provide accurate cache-related performance metrics. In this case, the reuse profiles are cache-specific. In a selection of GPU kernels, DRDA obtained the L1 miss-rate breakdowns with an average error of 3.86% and outperformed the state-of-the-art RDA in terms of accuracy. In terms of performance, DRDA is 246,000× slower than the real GPU executions and 11× faster than GPGPU-Sim. HLRDA ignores the cache-related parameters and its obtained reuse profiles are general, which can be used to calculate miss rates in all cache sizes. Moreover, the average error incurred by HLRDA was 16.9%.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and performance analysis of modern computational storage devices: A systematic review;Expert Systems with Applications;2024-09

2. Snake: A Variable-length Chain-based Prefetching for GPUs;56th Annual IEEE/ACM International Symposium on Microarchitecture;2023-10-28

3. GCoM;Proceedings of the 49th Annual International Symposium on Computer Architecture;2022-06-11

4. Hybrid, scalable, trace-driven performance modeling of GPGPUs;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2021-11-13

5. Analytical Modeling the Multi-Core Shared Cache Behavior With Considerations of Data-Sharing and Coherence;IEEE Access;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3