High Stable and Low Power 8T CNTFET SRAM Cell

Author:

Elangovan M.1ORCID,Gunavathi K.2

Affiliation:

1. Department of Electronics and Communication Engineering, Government College of Engineering, Bargur, Krishnagiri, Tamilnadu, India

2. Department of Electronics and Communication Engineering, PSG College of Technology, Coimbatore, Tamilnadu, India

Abstract

Designing of Complementary Metal Oxide Semiconductor (CMOS) technology based VLSI circuits in deep submicron range includes many challenges like tremendous increase of leakage power. Design is also easily affected by process variation. The Carbon NanoTube Field Effect Transistor (CNTFET) is an alternative for Metal Oxide Semiconductor Field Effect Transistor (MOSFET) for nanoscale range VLSI circuits design. CNTFET offers best performance than MOSFET. It has high stability and consumes least power. Static Random Access Memory (SRAM) cells play a vital role in cache memory in most of the electronic circuits. In this paper, we have proposed a high stable and low power CNTFET based 8Transistor (8T) SRAM cell. The performance of proposed 8T SRAM cells for nominal chiral value (all CNTFET with [Formula: see text], [Formula: see text]) and Dual chiral value (NCNTFET with [Formula: see text], [Formula: see text] and PCNTFET [Formula: see text], [Formula: see text]) is compared with that of conventional 6T and 8T cells. From the simulation results, it is noted that the proposed structure consumes less power than conventional 6T and 8T cells during read/write operations and gives higher stability during write and hold modes. It consumes higher power than conventional 6T and 8T cells during hold mode and provides lower stability in read mode due to direct contact of bit lines with storage nodes. A comparative analysis of proposed and conventional 8T MOSFET SRAM has been done and the SRAM parameters are tabulated. The simulation is carried out using Stanford University 32[Formula: see text]nm CNTFET model in HSPICE simulation tool.

Funder

Ministry of Communication and Information Technology

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3