An Ultra-Low-Power, 16 Bits CT Delta-Sigma Modulator Using 4-Bit Asynchronous SAR Quantizer for Medical Applications

Author:

Javahernia Sahel1,Aghdam Esmaeil Najafi2,Torkzadeh Pooya1

Affiliation:

1. Department of Electrical and Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2. Integrated Circuits Design Laboratory, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz 5331711111, Iran

Abstract

In this paper, a low-power second-order feed-forward capacitor-structure continuous-time [Formula: see text] modulator with a 4-bit asynchronous successive approximation register (SAR) quantizer is presented. Through the utilization capacitor structure in the proposed modulator, first, the summation node of the integrators’ outputs and the feed-forward signals is implemented within the second integrator to reduce power consumption by eliminating an active summing amplifier. Second, the proposed architecture can compensate for the quantizer delay without using any excess inner digital to analog converter (DAC). In this design, the modulator applies two different low-power operational amplifiers. These advantages cause the modulator to consume very low power and achieve a favorable figure of merit (FOM) value. In fact, in this paper, the combination of the previously reported methods and designs and doing required reforms has led to a new design with better performance, especially in power reduction. The designed modulator which is simulated using 0.18[Formula: see text][Formula: see text]m CMOS technology achieves 95.98[Formula: see text]dB peak signal-to-noise and distortion (SNDR) for 10[Formula: see text]KHz signal bandwidth and dissipates 44[Formula: see text][Formula: see text]w while its FOM is obtained about 43 fJ/conv.-step.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Implementation of Sigma-Delta ADC Filter;Electronics;2022-12-19

2. Mismatch error shaping of DAC unit elements in multibit ∆Σ modulators using a novel unified ADC/DAC;TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES;2021-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3