THE INTERACTION AND RELATIVE EFFECTIVENESS OF HARDWARE AND SOFTWARE DATA PREFETCH

Author:

VERMA SANTHOSH1,KOPPELMAN DAVID M.1

Affiliation:

1. Department of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA

Abstract

A major performance limiter in modern processors is the long latencies caused by data cache misses. Both compiler- and hardware-based prefetching schemes help hide these latencies and so improve performance. Compiler techniques infer memory access patterns through code analysis, and insert appropriate prefetch instructions. Hardware prefetching techniques work independently from the compiler by monitoring an access stream, detecting patterns in this stream and issuing prefetches based on these patterns. This paper looks at the interplay between compiler and hardware architecture-based prefetching techniques. Does either technique make the other one unnecessary? First, compilers' ability to achieve good results without extreme expertise is evaluated by preparing binaries with no prefetch, one-flag prefetch (no tuning), and expertly tuned prefetch. From runs of SPECcpu2006 binaries, we find that expertise avoids minor slowdown in a few benchmarks and provides substantial speedup in others. We compare software schemes to hardware prefetching schemes and our simulations show software alone substantially outperforms hardware alone on about half of a selection of benchmarks. While hardware matches or exceeds software in a few cases, software is better on average. Analysis reveals that in many cases hardware is not prefetching access patterns that it is capable of recognizing, due to some irregularities in the observed miss sequence. Hardware outperforms software on address sequences that the compiler would not guess. In general, while software is better at prefetching individual loads, hardware partly compensates for this by identifying more loads to prefetch. Using the two schemes together provides further benefits, but less than the sum of the contributions of each alone.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Reference6 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3