Discriminative Feature Selection Based on Imbalance SVDD for Fault Detection of Semiconductor Manufacturing Processes

Author:

Wang Jian12,Feng Jian1ORCID,Han Zhiyan2

Affiliation:

1. College of Information Science and Technology, Northeastern University, No. 11, Lane 3, Wenhua Road, Shenyang, Liaoning, P. R. China

2. College of Engineering, Bohai University, No. 19, Keji Road, Jinzhou, Liaoning, P. R. China

Abstract

Feature selection has become a key step of fault detection. Unfortunately, the class imbalance in the modern semiconductor industry makes feature selection quite challenging. This paper analyzes the challenges and indicates the limitations of the traditional supervised and unsupervised feature selection methods. To cope with the limitations, a new feature selection method named imbalanced support vector data description-radius-recursive feature selection (ISVDD-radius-RFE) is proposed. When selecting features, the ISVDD-radius-RFE has three advantages: (1) ISVDD-radius-RFE is designed to find the most representative feature by finding the real shape of normal samples. (2) ISVDD-radius-RFE can represent the real shape of normal samples more correctly by introducing the discriminant information from fault samples. (3) ISVDD-radius-RFE is optimized for fault detection where the imbalance data is common. The kernel ISVDD-radius-RFE is also described in this paper. The proposed method is demonstrated through its application in the banana set and SECOM dataset. The experimental results confirm ISVDD-radius-RFE and kernel ISVDD-radius-RFE improve the performance of fault detection.

Funder

National Natural Science Foundation of China

National High Technology Research and Development Program of China

Liaoning Province Natural Science Foundation of China

Education Department of Liaoning Province of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3