Two-Run RAM March Testing with Address Decimation

Author:

Mrozek Ireneusz1,Yarmolik Vyacheslav1

Affiliation:

1. Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A Str., 15-351 Bialystok, Poland

Abstract

Conventional march memory tests have high fault coverage, especially for simple faults like stack-at fault (SAF), transition fault (TF) or coupling fault (CF). The same-time standard march tests, which are based on only one run, are becoming insufficient for complex faults like pattern-sensitive faults (PSFs). To increase fault coverage, the multi-run transparent march test algorithms have been used. This solution is especially suitable for built-in self-test (BIST) implementation. The transparent BIST approach presents the incomparable advantage of preserving the content of the random access memory (RAM) after testing. We do not need to save the memory content before the test session or to restore it at the end of the session. Therefore, these techniques are widely used in critical applications (medical electronics, railway control, avionics, telecommunications, etc.) for periodic testing in the field. Unfortunately, in many cases, there is very limited time for such test sessions. Taking into account the above limitations, we focus on short, two-run march test procedures based on counter address sequences. The advantage of this paper is that it defines requirements that must be taken into account in the address sequence selection process and presents a deeply analytical investigation of the optimal address decimation parameter. From the experiments we can conclude that the fault coverage of the test sessions generated according to the described method is higher than in the case of pseudorandom address sequences. Moreover, the benefit of this solution seems to be low hardware overhead in implementation of an address generator.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Universal Address Sequence Generator for Memory Built-in Self-test*;Fundamenta Informaticae;2022-12-27

2. MBIST Controller Based on March-ee Algorithm;Journal of Circuits, Systems and Computers;2020-12-28

3. Pseudo-Exhaustive Testing Based on March Tests;Multi-run Memory Tests for Pattern Sensitive Faults;2018-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3