DESIGN OF LOW POWER TWO-PHASE CMOS BUFFER FOR LARGE CAPACITIVE LOADING APPLICATIONS

Author:

LIN HUNG-YI1,LAI YEN-TAI1

Affiliation:

1. Department of Electrical Engineering, National Cheng Kung University, Tainan, 701, Taiwan

Abstract

In this paper, a low power two-phase CMOS buffer with short-circuit power elimination and charge reuse for non-speed-critical large capacitive loading applications is proposed. The short-circuit power eliminating circuit is designed to remove the short-circuit current at the buffer's output, which accounts for the largest portion of the short-circuit power dissipation of the CMOS buffer. The charge reuse circuit is used to reduce the output dynamic power dissipation of the two-phase buffer. Moreover, the overall power dissipation of the proposed buffer is further decreased by optimizing the number of tapered stages and the values of tapered factors in the tapered chains of the short-circuit power eliminating circuit. In order to validate the efficiency of the proposed design, theoretical analysis and simulations with various capacitive loads are conducted using TSMC 0.18-μm 1P6M and UMC advanced 90-nm 1P9M CMOS technologies. The results show that the power dissipation of the proposed two-phase CMOS buffer is 8.6% lower than that of the conventional two-phase CMOS tapered buffer. The power-delay product of the proposed buffer is 2.7% smaller than that of the conventional tapered buffer.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3