A Deep Neural Network-Fused Mathematical Modeling Approach for Reliable Flight Control of Small Unmanned Aerial Vehicles

Author:

Xu Gang123ORCID,Su Weibin123ORCID,Pan Mingbo12ORCID,Wang Yikai12ORCID,He Zhengfang123ORCID,Dong Jiarui4ORCID,Zhao Jiangzheng4ORCID

Affiliation:

1. School of Intelligent Science and Engineering, Yunnan Technology and Business University, Kunming, Yunnan 651701, P. R. China

2. Edge Computing Network Center, Yunnan Technology and Business University, Kunming, Yunnan 651701, P. R. China

3. College of Information and Computing, University of Southeastern Philippines, Davao City 8000, Philippines

4. Kunming JONY Electron and Technology Co. LTD., Kunming, Yunnan 651701, P. R. China

Abstract

In order to ensure the flight safety of small unmanned aerial vehicles (UAVs), a deep neural network-fused mathematical modeling approach is put up for reliable flight control of small UAVs. First, engine torque, thrust eccentricity and initial stop angle are taken into full consideration. A six-degree-of-freedom nonlinear model is formulated for small UAVs, concerning both ground taxiing and air flight status. Then, the model was linearized using the principle of small disturbances. The linearized model expressions for both ground taxiing and air flight were provided. In addition, radial basis function neural networks are used for online approximation to address the nonlinearity and uncertainty caused by changes in aircraft aerodynamic parameters. At the same time, to compensate for the external disturbance and the approximation error of the neural network, the system robustness is improved by selecting reasonable design parameters. This helps the whole flight control system obtain better tracking control performance. At last, some simulation experiments are carried out to evaluate the performance of the proposed mathematical modeling framework. The simulation results show that the proposal has stronger convergence ability, smaller prediction error, and better performance. Thus, proper proactivity can be acknowledged.

Funder

Key R&D Plan of Yunnan Provincial Department of Science and Technology

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3