Three-dimensional transient simulation of CO2 laser tissue vaporization and experimental evaluation with a hydrogel phantom

Author:

Sudo Kazuma1,Shimojo Yu12,Nishimura Takahiro1,Awazu Kunio13

Affiliation:

1. Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan

2. Japan Society for the Promotion of Science, Kojimachi, 5-3-1, Chiyoda, Tokyo 102-0083, Japan

3. Global Center for Medical Engineering and Informatics, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan

Abstract

A quantitative analysis method of CO2 laser treatments promotes laser treatment performance and rapid clinical application of novel treatment devices. The in silico clinical trial approach, which is based on computational simulation of light-tissue interactions using the mathematical model, can provide quantitative data. Although several simulation methods of laser tissue vaporization with CO2 laser treatments have been proposed, validations of the CO2 laser wavelength have been insufficient. In this study, we demonstrated a tissue vaporization simulation using a CO2 laser and performed the experimental validation using a hydrogel phantom with constant physical parameters to evaluate the simulation accuracy of the vaporization process. The laser tissue vaporization simulation consists of the calculation of light transport, photothermal conversion, thermal diffusion, and phase change in the tissue. The vaporization width, depth, and area with CO2 laser irradiation to a tissue model were simulated. The simulated results differed from the actual vaporization width and depth by approximately 20% and 30%, respectively, because of the solubilization of the hydrogel phantom. Alternatively, the simulation vaporization area for all light irradiation parameters, which is related to the vaporization amount, agreed well with the actual vaporization values. These results suggest that the computational simulation can be used to evaluate the amount of tissue vaporization in the safety and effectiveness analysis of CO2 laser treatments.

Funder

Japan Society for the Promotion of Science KAKENHI

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3