Real-time and accurate estimation ex vivo of four basic optical properties from thin tissue based on a cascade forward neural network

Author:

Chen Haitao1ORCID,Liu Kaixian,Jiang Yuxuan,Liu Yafeng1,Deng YongORCID

Affiliation:

1. Huazhong University of Science and Technology

Abstract

Double integrating sphere measurements obtained from thin ex vivo tissues provides more spectral information and hence allows full estimation of all basic optical properties (OPs) theoretically. However, the ill-conditioned nature of the OP determination increases excessively with the reduction in tissue thickness. Therefore, it is crucial to develop a model for thin ex vivo tissues that is robust to noise. Herein, we present a deep learning solution to precisely extract four basic OPs in real-time from thin ex vivo tissues, leveraging a dedicated cascade forward neural network (CFNN) for each OP with an additional introduced input of the refractive index of the cuvette holder. The results show that the CFNN-based model enables accurate and fast evaluation of OPs, as well as robustness to noise. Our proposed method overcomes the highly ill-conditioned restriction of OP evaluation and can distinguish the effects of slight changes in measurable quantities without any a priori knowledge.

Funder

STI2030-Major Projects

National Natural Science Foundation of China

Independent Innovation Fund of WNLO

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3