Affiliation:
1. Huazhong University of Science and Technology
Abstract
Double integrating sphere measurements obtained from thin ex vivo tissues provides more spectral information and hence allows full estimation of all basic optical properties (OPs) theoretically. However, the ill-conditioned nature of the OP determination increases excessively with the reduction in tissue thickness. Therefore, it is crucial to develop a model for thin ex vivo tissues that is robust to noise. Herein, we present a deep learning solution to precisely extract four basic OPs in real-time from thin ex vivo tissues, leveraging a dedicated cascade forward neural network (CFNN) for each OP with an additional introduced input of the refractive index of the cuvette holder. The results show that the CFNN-based model enables accurate and fast evaluation of OPs, as well as robustness to noise. Our proposed method overcomes the highly ill-conditioned restriction of OP evaluation and can distinguish the effects of slight changes in measurable quantities without any a priori knowledge.
Funder
STI2030-Major Projects
National Natural Science Foundation of China
Independent Innovation Fund of WNLO
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献